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Abstract—  Two distinct and parallel research communities
have been working along the lines of the Model-Based
Diagnosis approach: the FDI community and the DX community
that have evolved in the fields of Automatic Control and
Artificial Intelligence, respectively. This paper clarifies and
links the concepts and assumptions that underlie the FDI
analytical redundancy approach and the DX consistency-based
logical approach. A formal framework is proposed in order to
compare the two approaches and the theoretical proof of their
equivalence together with the necessary and sufficient
conditions is provided.

Index Terms— Model Based Diagnosis, Fault Detection and
Isolation, Potential Conflict, Analytical Redundancy Relation
Support, Parity Space Approach vs Consistency-Based Logical
Approach.

I. INTRODUCTION

IAGNOSIS is an increasingly active research domain,
which can be approached from different perspectives
according to the knowledge available. The so-called

Model-Based Diagnosis (MBD) approach rests on the use of
an explicit model of the system to be diagnosed. The
occurrence of a fault is captured by discrepancies between the
observed behavior and the behavior that is predicted by the
model. Fault localization then rests on interlining the groups
of components that are involved in each of the detected
discrepancies. A definite advantage of this approach with
respect to others, such as the relational approach [27] or the
pattern recognition approach [16], is that it only requires
knowledge about the normal operation of the system,
following a consistency-based reasoning method.

Two distinct and parallel research communities have been
using the MBD approach. The FDI community has evolved in
the Automatic Control field from the seventies and uses
techniques from control theory and statistical decision theory.
It has now reached a mature state and a number of very good
surveys exist in this field ([26], [18], [17], [22], [9]).

The DX community emerged more recently, with
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foundations in the fields of Computer Science and Artificial
Intelligence ([39], [15], [20], [13]). Although the foundations
are supported by the same principles, each community has
developed its own concepts, tools and techniques, guided by
their different modeling backgrounds. The modeling
formalisms call indeed for very different technical fields;
roughly speaking analytical models and linear algebra on the
one hand and symbolic and qualitative models with logic on
the other hand. The fact that each community has its own
terminology and its own set of conferences and publications
results in a poor understanding of the work in both sides.

The French IMALAIA group, supported by the French
National Programs on Automatic Control GDR-Automatique
and on Artificial Intelligence GDR-I3 and AFIA (Association
Française d’Intelligence Artificielle), has been working along
these lines, benefiting from the work already performed by the
ALARM group [7] and related work in France (e.g. [33]). The
goals of this work are to agree upon a common DX/FDI
terminology, to identify links in the concepts, similarities and
complementarities in the DX and FDI methods, and to
contribute to a unifying framework, thus taking advantage of
the synergy of complementary techniques from the two
communities

This paper, which considerably details and extends ([10],
[11]), clarifies and links the concepts that underlie the FDI
analytical redundancy approach and the DX consistency-based
logical approach1. In particular, the link between structured
parity equations or analytical redundancy relations (ARR for
short) and conflicts (in the sense of Reiter) is clarified by
introducing the notions of potential conflict or ARR support
and interpreting a conflict as the support of a non satisfied
ARR. This extension of ([10], [11]) also highlights the role of
completeness properties on the set of ARRs and proves the
formal match of the two approaches under completeness
conditions which are clearly stated and discussed.

The FDI and DX model-based approaches used for fault
isolation are analyzed from the two perspectives. It is shown
that the first one, based on fault signatures, proceeds along a
column interpretation of the fault signature matrix linking
faults and ARRs whereas the later one, based on conflicts,

1 These are not the only model-based approaches in their respective
communities,  but both are prototypic in the sense that most other approaches
can be expressed in their formalism. The appellations FDI and DX
approaches are abused in the following for these prototypic  methods.
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proceeds along a row interpretation.
The results provided by the two approaches are then shown

to be identical under completeness conditions and the
theoretical proof is included. This is proved in the no
exoneration case under the single fault and the multiple fault
assumptions, the exoneration case being left for further
investigations. For the sake of clarity, the study is carried out
in a pure consistency-based framework, i.e. without fault
models.

The example that has been chosen to support the
comparative analysis throughout the paper is the well-known
system from [12] composed of three multipliers and two
adders referred as the polybox example (figure 1). It refers for
the sake of simplicity to a typical static system, but the
comparison achieved in this paper applies as well to systems
with a dynamic behavior. Indeed, a time variable may occur in
behavioral equations, and thus in ARRs and signature matrix,
and in observations. The only important limitation that is
assumed is that the behavioral state (correct or faulty) of each
component does not change during the diagnostic session,
putting aside the problems of temporal diagnosis [5]. The
question of incremental diagnosis and of the choice of the best
next test point [14], [15] is also left aside : the set of observed
variables is supposed to remain unchanged. In addition, the
system is assumed to operate in an ideal non noisy and non
disturbed environment.

.

M1
a

b

d

e

f

g

x

z

yc M2

M3

A1

A2

Fig. 1. The polybox system

The paper is organized as follows. Section II presents the
FDI analytical redundancy approach and the DX logical
approach, respectively. Section III proposes a unified
framework for the two approaches. The assumptions and
concepts adopted by the FDI and DX communities are
outlined and the correspondence between conflicts and ARRs
is exhibited. Section IV proves the equivalence of the two
approaches in the no exoneration case. Finally, section V
discusses the results and outlines several interesting directions
for future investigation.

II. PRESENTATION OF THE TWO APPROACHES

II.1. The FDI analytical redundancy approach

II.1.1. The system model

A system is made of a set of components and a set of
sensors, which provide a set of observations. The behavior
model of the system expresses the constraints that link its

descriptive variables. It is given by a set of relations, the
formal expression of which depends on the type of knowledge
(analytical, qualitative, production rules or numerical tables,
etc.). It generally relies on a component-based description,
which relates a set of constraints (or operators) to each
component.

Example (polybox): Elementary components are the adders
A1, A2 (operators +), the multipliers M1, M2, M3
(operators .) together with the set of sensors (identity operators
adopted here for the sake of simplicity, and not represented on
Figure 1).

Definition 2.1: The system model SM  is defined as the
behavioral model BM , i.e. the set of relations defining the
system behavior, together with the observation model OM,
i.e. the set of relations defining the observations that are
performed on the system and the sensor models.

The set V of variables can be decomposed into the set of
unknown variables X and the set of observed variables O.

Example (polybox continued):
V = X ∪ O where
X = {a, b, c, d, e, f, g, x, y, z}
O = {aobs, bobs, cobs, dobs, eobs, fobs, gobs}

Behavioral Model (BM):
RM1: x = a . c
RM2: y = b . d
RM3: z = c . e
RA1: f = x + y
RA2: g = y + z

Observation model (OM):
RSa: a = aobs
RSb: b = bobs
RSc: c = cobs
RSd: d = dobs
RSe: e = eobs
RSf: f = fobs
RSg: g = gobs

II.1.2. The diagnosis problem

The diagnosis requirements define a set of identifiers {Fop}
as the set of faults F  that may occur on an operator op.
Without loss of generality, we assume that there is a one-to-
one correspondence between components and operators (see
discussion in III.3) and the set of faults is hence noted {Fc}
where c is a component.

Definition 2.2: The set of observations OBS is a set of
relations of the form vobs = val, where vobs ∈ O and val is in
the domain of vobs.
Example (polybox continued): OBS = {aobs = 2, bobs = 2,
cobs = 3, dobs = 3, eobs = 2, fobs = 10, gobs = 12} is a set
of observations.
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Definition 2.3: A diagnosis problem is defined by the system
model SM, a set of observations OBS, and a set of possible
faults F.

II.1.3. Analytical redundancy relations

Definition 2.4: An analytical redundancy relation (ARR) is a
constraint deduced from the system model which contains
only observed variables, and which can therefore be evaluated
from any OBS. It is noted r = 0, where r is called the residual
of the ARR.
ARRs are used to check the consistency of the observations
with respect to the system model SM. The ARRs are satisfied
if the observed system behavior satisfies the model cons-
traints.
ARRs can be obtained from the system model by eliminating
the unknown variables2.

Definition 2.5: For a given OBS, the instantiation of the
residual r is noted val(r, OBS), abbreviated as val(r) when not
ambiguous. Val(r, OBS) = 0 thus means that the observations
satisfy the ARR r = 0.

Example (polybox continued):
Three redundancy relations are ARR1, ARR2 and ARR3

ARR1: r1 = 0 where r1 ≡ fobs – aobs . cobs – bobs . dobs
ARR2: r2 = 0 where r2 ≡ gobs – bobs . dobs – cobs .  eobs
ARR3: r3 = 0 where r3 ≡ fobs – gobs – aobs . cobs + cobs .  eobs

ARR1, ARR2 and ARR3 are obtained from the models of M1,
M2, A1; M2, M3, A2; and M1, M3, A1, A2, respectively. If
we assume that the sensors are not faulty, then the ARRs can
be rewritten as:

ARR1: f – (a . c + b . d) = 0
ARR2: g – (b . d + c .  e) = 0
ARR3: f – g – a . c + c . e = 0

II.1.4. Signature matrix

Besides analytical redundancy relations, a fundamental
concept in the FDI approach is that of fault signature. The
theoretical signature of a fault can be viewed as the expected
trace of the fault on the different ARRs, given the system
model.

Definition 2.6: Given a set SARR of ARRi: ri = 0, with
Card(SARR) = n, the (theoretical) signature of a fault Fj is
given by the binary vector FSj = [s1j, s2j, ..., snj]

T 
in which

sij is given by the following application

s: SARR  F  →{0,1}
(ARRi, Fj) → sij = 1 if the component affected

by Fj is involved in ARRi
sij = 0  otherwise.

2 The computation of a set of ARRs relies on elimination techniques
which are left aside here. It is in general guided by structural analysis which
can be formalized in a graph-theoretical framework (problem of finding a
complete matching in a bi-partite graph).

The interpretation of some sij being 0 is that the occurrence
of the fault Fj does not affect ARRi, meaning that val(ri) = 0.
On the other hand, the interpretation of some sij being equal
to 1 is that the occurrence of the fault Fj is expected to affect
ARRi, meaning that val(ri) is now expected to be different
from 0. This interpretation implicitly assumes that the
occurrence of Fj is observable on the result of the ARRi, or,
equivalently, that if ARRi is satisfied, then Fj is not present.
As it will be stated later more formally, this is known as the
single fault exoneration (SF-exo) assumption.

Definition 2.7: Given a set SARR of n ARRs, the signatures
of a set of faults F  = {F1, F2, …, Fm} all put together
constitute the so-called signature matrix FS of dimension
n×m.

Example (polybox continued): the signature matrix for the set
of single faults corresponding to components A1, A2, M1,
M2 and M3, respectively, is given by:

TABLE I
POLYBOX SINGLE FAULTS SIGNATURE MATRIX

FA1 FA2 FM1 FM2 FM3

ARR1 1 0 1 1 0
ARR2 0 1 0 1 1
ARR3 1 1 1 0 1

II.1.5. Multiple faults

The case of multiple faults can be dealt with by expanding
the number of columns of the signature matrix, leading to a
total number of 2

m
–1 columns if all the possible multiple

faults are considered. The theoretical signature of a multiple
fault is generally obtained from the signatures of single faults
as explained below. Consider that Fj is a multiple fault
corresponding to the simultaneous occurrence of k single
faults F1,…, Fk, then the entries of the signature vector of Fj
are given by:
sij = 0 if si1 = si2 = … = sik = 0
sij = 1 otherwise, i.e. if ∃ l ∈ {1,.., k} such that sil = 1
Example (polybox continued): the signature matrix above
extended to double faults (all signatures of triple faults and
above are identical to (1,1,1)) is given by:

TABLE II
POLYBOX DOUBLE FAULTS SIGNATURE MATRIX

FA1 FA2 FM1 FM2 FM3 FA1
A2

FA1
M1

FA1
M2

FA1
M3

FA2
M1

FA2
M2

FA2
M3

FM1
M2

FM1
M3

FM2
M3

ARR1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1
ARR2 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1
ARR3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

The interpretation of multiple fault signature entries is the
same as for single faults. Given the way multiple fault
signatures are derived from single fault signatures, this
interpretation implies that the simultaneous occurrence of
several faults is not expected to lead to situations in which the
faults compensate, resulting in the non-observation of the
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multiple fault. As it will be stated later more formally, this is
known as the multiple fault exoneration (MF-exo) assumption,
which is a generalization of the exoneration assumption
defined for single faults.

II.1.6.  Diagnosis

The diagnosis sets in the FDI approach are given in terms
of the faults accounted for in the signature matrix. The
generation of diagnosis sets is based on a column
interpretation of the signature matrix. The ARRs are
instantiated with the observed values OBS and the associated
residuals are determined, providing an observed signature,
which can be compared with the fault theoretical signatures.
This comparison is stated as a decision-making problem.

Definition 2.8: The signature of a given observation OBS is a
binary vector OS = [OS1,…,OSn]T where OSi = 0 if and only
if val(ri, OBS) = 0 and OSi = 1 otherwise.

The first step is to decide whether a residual value is zero or
not, in the presence of noises and disturbances. This problem
has been thoroughly investigated within the FDI community.
It is generally stated as a statistical decision-making problem,
making use of the available noise and disturbance models [4].

The second step is to actually decide which fault signatures
the observed signature is consistent with. A solution to this
decision-problem is to define the consistency criterion as
follows.

Definition 2.9: An observed signature OS = [OS1,…,OSn]T is
consistent with a fault signature FSj = [s1j,…,snj]

T if and
only if OSi = sij for all i.

The consistency criterion adopted here has a clear semantics
and is therefore appropriate for comparing the obtained
diagnosis results with the ones obtained by the logical
approach (cf. section 3). In practical situations (noisy
environment for instance), this definition asking for a strict
equality, is too demanding; it is why the FDI community
generally accepts an approximate matching using a weaker
similarity-based consistency criterion [6] (see V.3).

Definition 2.10: The diagnosis sets are given by the faults
whose signatures are consistent with the observed signature.
Example  (polybox continued): for different observed
signatures, the results summarized in table III are obtained
about single faults from the signature matrix of II.1.4, and
about multiple faults from the extended signature matrix of
II.1.5.

For the four first observed signatures, (0,0,0) and (1,1,0) have
no multiple faults whereas for (0,1,1) and (1,0,1) the new
double faults are supersets of single fault candidates; hence
they do not need to be considered. Considering multiple faults
does not bring thus more information for the four first
observed signatures. This is not the case for the (1,1,1)
signature for which double faults appear.

TABLE III
POLYBOX FDI DIAGNOSIS RESULTS FOR DIFFERENT OBSERVATION SIGNATURES

OS
ARR1 0 0 1 1 1
ARR2 0 1 0 1 1
ARR3 0 1 1 0 1

Single Fault
Diagnoses

none A2; M3 A1; M1 M2 none

Multiple Fault
Diagnoses

none (A2, M3) (A1, M1) none All double faults but
(A1, M1) and (A2, M3)

+ supersets

Another interesting point to note is that, in the polybox
example, the same results are obtained for the three first
observed signatures when the procedure is applied on ARR1
and ARR2 only:

(OS1,OS2) = (0,0) : no fault

(OS1,OS2) = (0,1) : A2 or M3 faulty

(OS1,OS2) = (1,0) : A1 or M1 faulty
In these examples, the use of ARR3, associated with r3,

does not provide any more localization power. This is
obviously not the case for the two last observed signatures, for
which r3 is needed to disambiguate the signature (1,1). It can
be noticed that ARR3 was obtained from the combination of
ARR1 and ARR2. The contribution of this kind of additional
redundancy relations and the existence of a minimal set of
ARRs is discussed in V.1.

It is worth mentioning that the FDI community has
developed a big amount of work for obtaining so-called
structured residuals, which are designed so that every residual
is sensitive to a subset of faults ([18], [32]). This provides a
specific structure to the signature matrix. The localization
power of a set of residuals can be derived from the properties
of the signature matrix structure. Another approach is to
design so-called directional residuals, which are designed so
that the occurrence of a given fault gives a particular direction
to the residual vector (observed signature). These methods
make the choice of a set of ARRs whose signatures are more
relevant than others.

II.2. The DX logical diagnosis approach

Reiter [39] proposed a logical theory of diagnosis. This
theory is often referred to as diagnosis from first principles;
i.e. given a description of a system together with observations
of the system’s behavior which conflict with the way the
system is meant to behave, the problem is to determine those
components of the system which, when not assumed to be
operating normally, restore the consistency with the observed
behavior.

This approach, also referred to as the consistency-based
approach, was later extended and formalized in [13]. In the
following we refer to the basic definition of [39] without
considering posterior extensions and refinements.

II.2.1. The system model

The description of the behavior of the system is
component-oriented and rests on first-order logic. The



SMCB-E-07152002-0280 5

components are those elements subject to faults and that are
part of the diagnosis of the system.

Definition 2.11: A system model is a pair (SD, COMPS)
where:
1. SD, the system description, is a set of first order logic
formulas with equality.
2. COMPS, the components of the system, is a finite set of
constants.

The system description uses a distinguished predicate AB,
interpreted to mean abnormal. ¬AB(c) with c belonging to
COMPS hence describes the case where the component c is
behaving correctly.

Example (polybox continued):
COMPS = {A1, A2, M1, M2, M3}
SD = {

ADD(x) ∧ ¬AB(x) ⇒ Output(x) = Input1(x) + Input2(x),
MULT(x) ∧ ¬AB(x) ⇒ Output(x) = Input1(x) . Input2(x),
ADD(A1), ADD(A2),
MULT(M1), MULT(M2), MULT(M3),
Output(M1) = Input1(A1), Output(M2) = Input2(A1),
Output(M2) = Input1(A2), Output(M3) = Input2(A2),
Input2(M1) = Input1(M3)

}

Let us note one aspect which differs somewhat from the
description of the system in the FDI approach: with the
distinguished predicate AB it is possible to link explicitly a
physical component with the formulas describing its behavior
and to make explicit the fact that the formulas describe the
normal behavior of the component.
Formulas describing the behavior of the components are
generally expressed by constraints and need a constraint solver
to be processed. In the absence of such a constraint solver,
they can be preprocessed by hand.

 Example (polybox continued): the two first constraints above
can be rewritten as:
{ ADD(x) ∧ ¬AB(x) ⇒ Output(x) := Input1(x) + Input2(x),

ADD(x) ∧ ¬AB(x) ⇒ Input1(x) := Output(x) – Input2(x),
ADD(x) ∧ ¬AB(x) ⇒ Input2(x) := Output(x) – Input1(x),
MULT(x) ∧ ¬AB(x ) ⇒ Output(x) := Input1(x) . Input2(x),
MULT(x) ∧ ¬AB(x) ∧ Input2(x)≠0 ⇒  

Input1(x) := Output(x) / Input2(x),
MULT(x) ∧ ¬AB(x) ∧ Input1(x)≠0 ⇒  

Input2(x) := Output(x) / Input1(x) }

II.2.2.  The diagnosis problem

A diagnosis problem results from the discrepancy between
the normal behavior of a system as described by the system
model and a set of observations

Definition 2.12: A set of observations OBS is a set of first-
order formulas.

Example (polybox continued): Suppose the polybox is given
the inputs a = 2, b = 2, c = 3, d = 3, e = 2, and it outputs
f = 10, g  = 12 in response. The set of observations is
represented by:

OBS = {Input1(M1) = 2, Input2(M1) = 3, Input1(M2) = 2,
Input2(M2) = 3, Input2(M3) = 2, Output(A1) = 10,
Output(A2) = 12}.

Definition 2.13: A diagnosis problem is a triple (SD,
COMPS, OBS) where (SD, COMPS) is a system model and
OBS a set of observations.
Note that this definition matches Definition 2.3 provided that
each fault F  corresponding to a set ∆  ⊆  C O M P S of
components is described by:

∧ c ∈ ∆ AB(c).

II.2.3. Diagnosis

A diagnosis is a conjecture that certain components of the
system are behaving abnormally. This conjecture has to be
consistent with what is known about the system and with the
observations. Thus, a diagnosis is given by an assignment of
a behavioral mode, AB or ¬AB, to each component of the
system in a way consistent with the observations and the
model.

Definition 2.14: A diagnosis for (SD, COMPS, OBS) is a set
of components ∆ ⊆ COMPS such that: SD ∪ OBS ∪ {AB(c)
| c ∈  ∆} ∪  {¬AB(c) | c ∈  COMPS  – ∆} is consistent. A
minimal diagnosis is a diagnosis ∆ such that ∀∆' ⊂ ∆, ∆' is
not a diagnosis.

Following the principle of parsimony, minimal diagnoses
are often the preferred ones.

Proposition 2.1: If every occurrence in the clausal form of SD
∪ OBS of an AB-literal is positive, the minimal diagnoses are
sufficient to characterize all the diagnoses, i.e. the diagnoses
are exactly the supersets of the minimal diagnoses.

The condition in proposition 2.1 is in particular satisfied
when SD is limited to correct behavioral models expressed as
necessary  conditions, that is to the absence of explicit fault
models, which is the case studied in this paper, and to the
absence of exoneration models. Necessary  conditions of
correct behavior are of the form ¬AB(x) ⇒ CM, where CM is
a formula describing the correct behavior of x. Explicit fault
models are of the form ABi(x) ⇒  FMi, where FMi is a
formula describing a particular faulty behavior of x.
Exoneration models express sufficient conditions of
correctness of the form CM ⇒ ¬AB(x), and can be generally
seen as a very weak, non predictive, fault model, and are to
some extent discussed in section IV.

By virtue of proposition 2.1, limiting ourselves to system
descriptions made up of correct behavioral models expressed
as necessary conditions means that diagnoses are characterized
as supersets of minimal diagnoses. This limitation is
assumed in the rest of the paper, except in IV.1.

II.2.3.1. R-conflicts

SEQA direct way of computing diagnoses based on definition
2.14 is a generate and test algorithm where subsets of
components are selected, generating minimal ones first, and
tested for consistency. The obvious problem is the inefficiency
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of this method. A method based upon the concept of conflict
set has been proposed and is at the basis of most of

implemented DX algorithms. This concept has been
introduced by [39] and will be designated by R-conflict in this
paper.

Definition 2.15: An R-conflict for (SD, COMPS, OBS) is
a set of components C = {c1, ..., ck} ⊆  COMPS such that
SD ∪ OBS ∪ {¬AB(c) | c ∈ C} is inconsistent, i.e.: SD ∪
OBS |= ∨c  ∈  C  AB(c). A minimal R-conflict is an R-conflict,
which does not strictly include (set inclusion) any R-conflict.

An R-conflict can be interpreted as follows: one at least of the
components in the R-conflict is faulty in order to account for
the observations; or equivalently it cannot be the case that all
the components of the R-conflict behave normally. On the last
expression of definition 2.15, it can be seen that an R-conflict
identifies with a positive AB-clause which is an implicate of
the system description and the observations.

Example  (polybox continued): The polybox with the
observations as seen above (f = 10, g = 12) has the following
minimal R-conflicts: {A1, M1, M2} and {A1, A2, M1, M3}
due to the abnormal value of 10 for f. Symmetrically, f = 12
and g = 10 yields {A2, M2, M3} and {A1, A2, M1, M3}. In
the case f = 10 and g = 10, the two minimal R-conflicts are:
{A1, M1, M2} and {A2, M2, M3}. In the case f = 10 and
g = 14, the three minimal R-conflicts are: {A2, M2, M3},
{A1, M1, M2}, and {A1, A2, M1, M3}.

II.2.3.2. Computing minimal diagnosis using R-conflicts.

Using minimal R-conflicts, it is possible to give a
characterization of minimal diagnoses, which provides a basis
for computing them. By virtue of proposition 2.1 and
following the hypothesis made at the end of II.3.2, minimal
R-conflicts also provide a characterization of all diagnoses.

This characterization is based on the minimal hitting set
definition which follows:

Definition 2.16: A hitting set for a collection C  of sets is
a set H ⊆ ∪ {S / S ∈ C } such that H ∩ S  ≠ {} for each S  ∈
C . A hitting set is minimal if and only if no proper subset of
it is a hitting set for C .

A hitting set intersects each set of the collection. Obviously,
in order to compute the minimal hitting sets of a collection C

of sets, only those elements in C  which are minimal have to
be considered.

Proposition 2.2: ∆  is a (minimal) diagnosis for (SD,
COMPS, OBS) if and only if ∆ is a (minimal) hitting set for
the collection of (minimal) R-conflicts for (SD , COMPS,
OBS).

Example (polybox continued): see Table IV.

A more general characterization of conflicts and diagnoses,
available with exoneration models and with fault models, can
be found in [13], allowing to get conflicts and diagnoses from
prime implicates and prime implicants of the logical theory
and giving then a way of computing diagnoses using a
theorem prover. Our aim in this paper being to compare the
basis of the FDI and DX approach in the absence of fault
models, we do not consider these extensions of the theory and
limit ourselves to the above definitions.

III. UNIFIED FRAMEWORK FOR THE DX AND FDI
APPROACHES

This section first discusses the different ways DX and FDI
formulate the diagnosis problem and links the different objects
that underlie the concept of fault on each side. The notion of
potential conflict or ARR support is introduced and the
formal match of the two approaches is obtained, proving that a
conflict can be interpreted as the support of a non satisfied
ARR. The matrix framework is then proposed as suitable to
strictly compare both approaches.

III.1. System model (SM) vs. system description (SD)

Both FDI and DX approaches are model-based. In FDI, the
system model SM is composed of the behavior model BM and
the observation model O M  of the non faulty system.
Behavioral laws are described in BM as constraints between
variables (in general a set of ordinary differential and algebraic
equations). Most works in the FDI community do not
explicitly use the concept of component, and BM describes the
system as a whole, using e.g. state space models. When
component based models are used, topological knowledge is
implicitly included as shared variables. The observation model

TABLE IV
POLYBOX DX DIAGNOSIS RESULTS FOR DIFFERENT OBSERVATION SIGNATURES

OBS
f =  12 12 10 10 10
g = 12 10 12 10 14

Minimal
R-conflict none {A2, M2, M3},

{A1, A2, M1, M3}
{A1, M1, M2}

{A1, A2, M1, M3}
{A1, M1, M2},
{A2, M2, M3}

{A1, M1, M2},
{A1, A2, M1, M3},

{A2, M2, M3}

Minimal
diagnoses

{}

{A2};
{M3};

{A1, M2};
{M1, M2}

{A1};
{M1};

{A2, M2};
{M2, M3}

{M2}; {A1, A2};
{A1, M3};
{A2, M1};
{M1, M3}

{A1, A2}; {A1, M2};
{A1, M3}; {A2, M1};
{A2, M2}, {M1, M2};
{M1, M3}; {M2, M3}.
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describes which system variables are available from the
sensors and the sensor models. In the simplest cases, the
behavioral law of a non faulty sensor just equals some variable
to the sensor output (an observed variable belonging to O): a
= aobs.

In DX, the system description S D  includes explicit
topological knowledge and behavioral models of components.
The main difference with FDI is that the assumption of correct
behavior of a component, which supports its model, is
explicitly coded thanks to the AB predicate. So, if F is a
formula3 describing the correct behavior of a component c, SM
just contains F (which implicitly means that the behavior of
¬AB(c) is given by F) whereas SD  explicitly contains the
formula: ¬AB(c) ⇒ F. Very often, the observation model OM
is not present in DX. The equality a = aobs for each variable
in O is thus implicitly assumed, and sensor faults are dealt
with by considering sensors as components. To achieve a
suitable comparison framework, further developments assume
that the following property holds.

SRE Property (System Representation Equivalence): Let
SM and SD respectively be a FDI and a DX model of the same
system. The SRE property is true if each formula of SM
representing (part of) a behavioral law of a component or
sensor c appears in the right-hand side of an implication in
SD, the left-hand side of which is ¬AB(c) and conversely. SM
is then simply obtained from SD by substituting False to all
occurrences of the AB predicate.

In the following, by virtue of the SRE property, SM and
SD  are equally used. The restriction of SM (SD) to the
behavioral law(s) of a set of components C  is denoted by
SM(C) (SD(C)).

III.2. FDI observations versus DX observations

In DX, the set of observations expresses as a set of first-
order formulas. It is hence possible to express disjunctions of
observations, which provides a powerful language. However,
very often, only conjunctions of atomic formulas are used. In
FDI, the observations are always conjunctions of equalities
assigning a real value and/or possibly an interval value to an
observed variable. In the following, to favor the comparative
analysis, we do assume that we have the same observation
language In both FDI and DX approaches, OBS is identical
and made up of relations aobs = v, which assign a value v to
an observed variable.

III.3. FDI Faults vs. DX faults

DX adopts a component-centered modeling approach and
defines a diagnosis as a set of (faulty) components. In FDI the
concept of component is not in general the central one.
Whereas DX abstracts the diagnosis process at the component
level, FDI deepens the analysis down to variables and
parameters. FDI faults hence rather correspond to the DX

3
 F can be assumed to be written in first-order predicate calculus, even if

in practice a constraint logic programming framework is frequently used, the
truth value of F being thus evaluated with respect to a given semantics of the
constraints in a given domain.

concept of fault mode. In general, several parameters can be
associated with a given component, giving rise to different
fault modes. The difference is that FDI faults are viewed as
deviations with respect to the models of normal behavior
whereas in DX's logical view the faulty behavior cannot be
predicted from the normal model and the involved parameters.
For deterministic models, two kinds of deviations are
considered [19]:
•  in the system parameters, which may take values different
from the nominal ones. These are referred to as multiplicative
faults4.
•  in known variables associated to the sensors and actuators.
These are referred to as additive faults4.

As a consequence, the columns of the signature matrix are
generally associated with variables and parameters. The link
between additive/multiplicative faults and components is
hence easy to establish : sensor and actuator faults are
generally modeled as additive faults whereas system
component faults are modeled as multiplicative faults.

Note that, in FDI, system parameters may be physical
parameters when the models are issued from physical first
principles, or so called structural parameters when, typically,
the model is the result of black-box identification. Structural
parameters have no straightforward physical semantics.
However, in some cases, it is possible to establish the (non
necessarily one-to-one) correspondence with physical
parameters [23]. In the two cases, the model developer must
be able to make the link between parameters and physical
components if the goal is fault isolation. On the other hand,
linking variables to sensors and actuators is straightforward.

Conversely, the DX approach could easily account for FDI
fault models by expressing the model at a finer granularity
level. For instance, considering a single-input single-output
(static) component c  whose behavior depends on two
parameters θ1 and θ2 , the standard DX model given by:

COMPONENT(x) ∧ ¬AB(x) ⇒
Output(x) = f(Input(x), θ1, θ2)

COMPONENT(c)
could be replaced by:

COMPONENT(x) ∧ PARAMETER1(y) ∧ PARAMETER2(z)∧ 
   ¬AB(x) ∧ ¬AB(y) ∧ ¬AB(z) ⇒ Output(x) = f(Input(x), y, z)

PARAMETER1(θ1),PARAMETER2(θ2), COMPONENT(c)

The component-based DX approach can hence be
generalized by allowing the set COMPS to include not only
components (including sensors and actuators), but also
parameters. This framework is adopted in the following,
COMPS standing for the set of generalized components, in
one-to-one correspondence with FDI faults.

III.4. ARRs vs. R-conflicts

In the two approaches, diagnosis is triggered when
discrepancies occur between the modeled (correct) behavior and
the observations (OBS). As seen in section II.2, in DX,
diagnoses are generated from the identification of R-conflicts,

4 with reference to their influence on the state variable vector in a state
space model.
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where an R-conflict is a set of components the correctness of
which supports a discrepancy. In the ARR framework,
discrepancies come from ARRs, which are not satisfied by
OBS.

The fundamental correspondence between ARRs and R-
conflicts is now established using the following definitions
and property.

Definition 3.1: The support of an analytical redundancy
relation ARRi is the set of components (columns of the
signature matrix) with a non zero element5 in the row
corresponding to this ARRi.

Definition 3.2: The scope of a component cj  is the set of
ARRs (rows of the signature matrix) with a non zero element
in the column corresponding to cj.

In II.1.3, ARRs have been defined with respect to a
syntactic property (observed variables), and sets of ARRs are
supposed to be (in some cases, proven to be) complete, in the
sense that they are sensitive to relevant faults. Note that
proving this property in the general case amounts to prove a
general diagnosability property of faults. We will take it as an
assumption, to be proven for particular systems under
consideration, and moreover make a distinction between the
standard view of completeness in FDI and a view taking ARR
supports into account.

ARR-d-completeness Property: A set E of ARRs is said to
be d-complete if:
• E is finite;
• for any OBS, if SM ∪ OBS |= ⊥, then ∃ ARRi ∈ E such that
{ARRi} ∪ OBS |= ⊥.

ARR-i-completeness Property: A set E of ARRs is said to be
i-complete if:
• E is finite;
• for any set C  of components, C  ⊆  COMPS , and for any
OBS, if SM(C) ∪ OBS |= ⊥, then ∃ ARRi ∈ E such that the
support of ARRi is included in C and {ARRi} ∪ OBS |= ⊥.

It will be clear from the comparison that d-completeness
guarantees detectability, and i-completeness refers to isolation.

Proposition 3.1: Assuming the SRE property, let OBS be a
set of observations for a system modeled by SM (or SD).

1) Given an analytical redundancy relation ARRi violated
by OBS, the support of ARRi is an R-conflict;

2) If E is a d-complete set of ARRs, then if there exists an
R-conflict for (SD, COMPS, OBS), there exists an
analytical redundancy relation ARRi ∈ E violated by OBS;

3) If E is i-complete, then given an R-conflict C  for (SD,
COMPS, OBS), there exists an analytical redundancy
relation ARRi ∈  E  violated by OBS whose support is
included in C.

Proof:
1) By hypothesis, {ARRi} ∪  OBS |=  ⊥ ; since, if C  is the

support of ARRi, A R Ri is a consequence of SM(C), it
follows that SM(C) ∪ OBS |= ⊥, i.e. C is an R-conflict.

5 It will be seen later that an extension can be done so that the elements
of the FS matrix can take a value different from 1, when not equal to 0.

2) Suppose now that an R-conflict has been detected and that
E is d-complete. Since an R-conflict exists, SM ∪ OBS |=
⊥, and d-completeness gives an ARRi ∈ E such that {ARRi}
∪ OBS |= ⊥.

3) Last, let C  be an R-conflict and suppose that E  is i-
complete. By definition of R-conflicts, one has SM(C) ∪
OBS |= ⊥, and i-completeness gives the result.
In consequence, the support of an ARR can be defined as a

potential R-conflict (cf. the related concept of possible conflict
in [29]).

Corollary 3.1: If both the SRE property holds and the ARR-
i-completeness holds, the set of minimal R-conflicts for OBS
and the set of minimal supports of ARRs (taken in any i-
complete set of ARRs) violated by OBS are identical.

Example (polybox continued):
The potential R-conflicts are: C1 = {A1, M1, M2} (support
of ARR1), C2 = {A2, M2, M3} (support of ARR2) and C3

= {A1, A2, M1, M3} (support of ARR3).
With f = 10 and g = 12, ARR1 and ARR3 are not satisfied,
which gives rise to the minimal R-conflicts C1 and C3.
With f = 10 and g = 10, ARR1 and ARR2 are not satisfied,
which gives rise to the minimal R-conflicts C1 and C2.
With f = 10 and g = 14, ARR1, ARR2 and ARR3 are not
satisfied, which gives rise to the minimal R-conflicts C1, C2

and C3.

Given SM, COMPS, OBS, the equivalence between really
computed minimal R-conflicts for that OBS on the one hand
and minimal supports of those really computed ARRs which
are falsified by OBS on the other hand, depends both on the
existence of a complete problem solver for DX (computation
of prime implicates) and of a computable i-complete set of
ARRs. Proposition and corollary 3.1 state the conditions
under which a formal equivalence holds. This is a key point of
the comparison between the FDI and DX approaches. Notice
that corollary 3.1 was stated in [11] as proposition 4.1,
omitting the condition of i-completeness. This statement was
thus exact only in the cases where an i-complete set of ARRs
exists. [29] suggested rightly that some conditions were
needed, but gave only a sufficient condition of effective
computability without any characterization and did not point
out any concept similar to i-completeness. This is the case for
example for linear algebraic equations, but it has not been
proven in general. The completeness properties will be
discussed more deeply in V.1.

III.5. The matrix framework

The FDI approach uses the signature matrix crossing ARRs
in rows and sets of components in columns. It was shown in
II.1 that, given an observation OBS, diagnosis is achieved by
identifying those columns, which are identical (or closest with
respect to a distance function) to the observed signature.

In the DX approach, it has been seen in II.2 that (minimal)
diagnoses are obtained as (minimal) hitting sets of the
collection of (OBS-) R-conflicts. From III.4 above, under the
assumption of i-completeness, such R-conflicts can be viewed
as the supports of those ARRs which are not satisfied by
OBS , i.e. looking at the corresponding set of rows I . A
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(minimal) hitting set of the collection of R-conflicts can thus
be viewed as a (minimal) set J of singleton columns (i.e.
columns corresponding to one single component) such that
each of the rows of I intersects at least one column of J (i.e.
has a non zero element in this column).

It is thus quite natural to adopt this matrix framework as a
formal basis on which to compare the two approaches.

Let SARR = {ARRi | i = 1…n} be a set, assumed to be i-
complete, of ARRs and COMPS = {cj | j = 1…m} be the set
of components of the system. FS = [sij]i = 1…n, j = 1…m is
the signature matrix. The jth column of FS is the signature of
a fault on cj and is noted FSj.

Definition 3.3: Any observation OBS splits the set SARR into
two subsets. The subset of ARRs which are violated, i.e.
{ARRi ≡ (ri = 0) | val(ri, OBS) ≠ 0}, is defined as Rfalse. The
subset of ARRs which are satisfied, i.e. {ARRi ≡  (ri  = 0) |
val(ri, OBS) = 0}, is defined as Rtrue. Obviously, one has
Rtrue = SARR \ Rfalse.

OBS is thus described through its signature OS, which is
the binary column vector defined by: for all i = 1…n, OSi = 1
if ARRi ∈ Rfalse and OSi = 0 if ARRi ∈ Rtrue. Note that this
is equivalent to: OSi = FaOBS(ARRi), where FaOBS stands for
“not satisfied” and denotes the falsity value of the relation
ARRi with respect to OBS.

The FDI theory compares the observed signature to the fault
signatures whereas DX considers each line corresponding to an
ARR in Rfalse separately, isolating R-conflicts before
searching for a common explanation. In the following, these
approaches are called column view and line view respectively.

III.6. Multiple faults

In the matrix framework proposed in III.5, the DX approach
deals with multiple faults by implicitly considering sets of
singleton columns. By default, there is no limitation on the
number of possible simultaneous faults: minimal diagnoses
are built as minimal hitting sets of the collection of minimal
R-conflicts and are not limited in size. Single and multiple
faults are thus dealt with in exactly the same framework.

In the FDI approach, as seen in II.1.5, dealing with
multiple faults requires adding new columns to FS,
corresponding to the considered multiple faults (a maximum
of 2|COMPS| – |COMPS | – 1 if all possible multiple faults are
considered). Let us call MF property, the constraint which has
to be satisfied by the new columns.

For J = {j1,...,jk} ⊆  {1,...,m}, let us note CJ the subset
{cj / j ∈  J}6, and siJ the matrix element of FS at row i  and
column FSJ (meaning the column added for CJ representing a
multiple fault).  Then, for any row i, we have:

siJ ≠ 0 if and only if ∃µ 1≤µ≤k si jµ ≠ 0 (MF property)

The correspondance between the DX and the FDI
perspectives in the case of multiple faults can now be checked.
Let the set of singleton columns {FSj1, ..., FSjk} be one
hitting set  of a rows set  I. {FSj1, ..., FSjk} is viewed as a
new column FSJ corresponding to CJ = {cj1, ..., cjk}. It

6
 Component Cj is here straightforwardly identified to C{j}.

results from the hitting set definition that each row of I must
intersect the column FSJ if and only if it intersects at least one
of the FSjµ columns. The column FSJ must have thus a non
zero element in a given row i of I if and only if at least one of
the FSjµ columns has a non zero element in row i, i.e. FSJ
exactly verifies the MF-property.

As the extended matrix is computed for any possible set I
of rows, the MF property has to hold for each row i  and
extended column F SJ. Consequently, the correspondence
between the DX and FDI approaches is shown to be well-
stated in the matrix framework.

The MF property expresses the intuitive idea that a
multiple fault may affect an ARR if and only if at least one of
the single faults it is made up of may affect this ARR. This
means that the scope of a multiple fault is the union of the
scopes of its single fault constituents.  

The MF property implies an assumption on the way
multiple faults manifest themselves in relation with the
manifestation of single faults (for instance, no compensation
or MF-exo assumption). Section IV discusses this point and
shows that the MF property has to be adapted with respect
with the assumptions that are made about the combination of
the effects of the single faults.

IV. COMPARING DX AND FDI APPROACHES ASSUMPTIONS
AND RESULTS

This section makes an intensive comparison of the DX and
FDI approaches. It is shown that every approach adopts
different diagnosis exoneration assumptions by default. Under
the same assumptions, in particular with no exoneration at all,
it is shown that the results provided by both approaches are
identical and the theoretical proofs are included.
For explicitness purpose, the formulas corresponding to the
different assumption cases used in the comparison are labeled
as explained: C/LV: Column/Line View, S/MF:
Single/Multiple Fault, (no-)exo: (no) ARR-based exoneration.

IV.1. Exoneration assumptions for the comparison

The originality and the power of both the FDI and DX
approaches result from the fact that they are based only on the
correct behavior of the components: no model of faulty
behavior is needed. Nevertheless, different assumptions are
adopted by default by each approach, leading to different
computations of the diagnoses. These assumptions concern the
manifestations of the faults through observations.

 The DX approach makes absolutely no assumption about
how a component may behave when it is faulty. This is
because this approach is only based on a reductio ad
absurdum principle: any discrepancy between the correct
model and the observations necessarily implies that a
component is faulty. This ensures the fundamental property of
the DX approach, i.e. its logical soundness. In the matrix
framework, this means that, for any given OBS, only those
rows (ARRs) which are not satisfied by OBS are considered:
for each one, its support constitutes the associated R-conflict.
Possible diagnoses (sets of faulty components) are built from
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these R-conflicts. However, the DX approach allows one to
state an explicit exoneration assumption at the level of every
component: assume any component, the model of which is
satisfied in a given context, correct in this context. Beyond
the default assumption of DX (nothing assumed about faulty
behavior), this exoneration assumption is equivalent to state
that the occurrence of any fault always manifests in the sense
that a faulty component does not behave according to its
corresponding model. This hypothesis is commonly expressed
explicitly in SD by modeling components with biconditionals
(relating the explicit correctness assumption and the
functioning law). Note that, as conditions of proposition 2.1
are no more satisfied in this case, only minimal diagnoses are
still characterized in terms of R-conflicts, a superset of a
diagnosis being not in general a diagnosis. We do refer to this
assumption as to the component-based exoneration (COMP-
exo) assumption.

Definition 4.1 (COMP-exo assumption): If the correct
behavioral model of a component is satisfied in a given
context (given observation OBS and assumption of correct
behavior of some given components), then this component is
assumed to be correct in this context.

Conversely, the FDI approach is based on a direct reasoning
about the effects of a fault (column), viewed as a non
satisfaction of the correct behavioral model of the
corresponding component, on the ARRs (rows). In addition to
the obvious fact that a fault cannot affect an ARR which it is
not in its scope, which is the direct reasoning used in DX, the
idea is that a fault necessarily manifests itself by affecting the
ARRs in its scope, causing them not to be satisfied by any
given OBS. Hence, given OBS, not only, as in DX, is any
component in the support of a non satisfied ARR a fault
candidate, but also any component in the support of a satisfied
ARR is implicitly exonerated (satisfied rows are thus also
used in the reasoning). In fact this result is not sound but rests
on an ARR-based exoneration (ARR-exo) assumption, which
is implicitly made in the FDI approach and has to be
considered explicitly in order to compare the FDI approach
with the DX approach.

Definition 4.2 (ARR-exo assumption): A set of faulty
components necessarily shows its faulty behavior, i.e. causes
any ARR in its scope not to be satisfied by any given OBS.
Or, equivalently, given OBS, each component of the support
of a satisfied ARR is exonerated, i.e. is considered as
functioning properly.

In the following, the comparison between DX and FDI
approaches is made only in the case of no-exoneration at all,
i.e. no COMP-exo in DX (which is the default case) and no
ARR-exo in FDI (which is not the default case). The
comparison of the FDI ARR-exo assumption and the DX
COMP-exo assumption has been made, relying on the concept
of alibi [30] but is out of the scope of this paper and will be
published apart

IV.2. The no-exoneration case

In this subsection, under the SRE property, the no-
exoneration case is now given a formal account in the matrix
framework previously introduced, in order to specify formally
which (sets of) components have to be considered as diagnoses
in each case.

From the matrix viewpoint, the fact that ARRi, if satisfied
by OBS, exonerates cj appears (cf. II.1.4) in FS as sij = 1. In
order to release the default ARR-exo assumption in the FDI
approach, it is necessary to express that a faulty component
may or may not affect the ARRs in its scope. To make the
difference with the previous case, the symbol X can be used
instead of 1 for this purpose. We can now represent the fact
that cj belongs to the support of ARRi but is not necessarily
exonerated when ARRi is satisfied by OBS, by sij = X. The
semantics of sij = X is thus: a fault in cj can explain why
ARRi is not satisfied by OBS, but ARRi may happen to be
satisfied by OBS even when cj is faulty (to be compared with
the semantics of sij = 1: a fault in cj implies that ARRi cannot
be satisfied by any OBS).

The generalized use of an exoneration assumption for each
component of the support of each ARR is called the
exoneration case and corresponds to the assumption by default
of the FDI approach (elements of FS take their values in {0,
1}). As said above, in the present comparison, we consider
only the total lack of exoneration, called the no-exoneration
case (elements of FS take their values in {0,X}). In this later
case, definitions 3.1 and 3.2 translate to: the support of an
ARRi is the set {cj | sij = X}; the scope of a component cj is
the set {ARRi | sij = X}.

IV.2.1. The single fault no-exoneration case (SF-no-exo case)

The column associated with the faulty component must
have X in non satisfied rows and 0 or X in satisfied rows. In
this column view, the matching of the observed signature with
a fault signature is thus based on the fact that an X in the fault
signature is consistent with either a 0 or a 1 in the observed
signature. So, it is just like using only non satisfied rows: the
faulty component must have X in each such row.

So acceptable diagnoses are those {cj} verifying:

Rfalse ⊆ Scope(cj) (CV-SF-no-exo)

In the line view, {cj} is an acceptable diagnosis if it hits all
the supports of not satisfied ARRs, that is to say:

∀i (ARRi ∈ Rfalse ⇒ cj ∈ Support(ARRi))   (LV-SF-no-exo)

(LV-SF-no-exo) and (CV-SF-no-exo) are straightforwardly
equivalent, because each one is equivalent to: ∀i (FaOBS(ARRi)
= 1 ⇒ sij = X).
We have thus the result:

Theorem 4.1: Under the assumption of i-completeness, FDI
single fault diagnoses in the ARR-no-exoneration case are
identical to non empty DX single fault diagnoses.
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Example (polybox continued) Releasing the exoneration
assumption in the polybox example leads to the following
single fault signature matrix:

TABLE V
POLYBOX SINGLE FAULTS SIGNATURES WITHOUT EXONERATION

FA1 FA2 FM1 FM2 FM3
ARR1 X 0 X X 0

ARR2 0 X 0 X X

ARR3 X X X 0 X

The following results are then obtained:
With outputs f = 10 and g  = 12, i.e. observed signature
(1,0,1), there are 2 single fault diagnoses {A1} and {M1}.
With outputs f = 10 and g  = 10, i.e. observed signature
(1,1,0), there is only one single fault diagnosis {M2}.
With outputs f = 10 and g  = 14, i.e. observed signature
(1,1,1), there is no single fault diagnosis.

With outputs f = 12 and g  = 12, i.e. observed signature
(0,0,0), there are 5 single fault diagnoses.

These results obtained by FDI are identical to those
obtained by DX (cf. II.2.3.2).

Let us remark also that, except in the case of normal
observation (null observed signature), these results are the
same as under the default exo assumption (cf. II.1.6). This is
because, as each one of the ARRs can be derived from the
other two, the observed signatures (1,0,0), (0,1,0) and (0,0,1)
are physically impossible. But this would not be the case in
general. For instance, it is not the case here for the normal
observation f = 12, g = 12, i.e. observed signature (0,0,0): in
the exo case (cf. II.1.6), no single fault diagnosis exists, when
in the no-exo case, five single-fault diagnoses corresponding
to the five components are proposed.

IV.2.2. The multiple fault no-exoneration case (MF-no-exo
case)

In this case, (CV-SF-no-exo) can be straightforwardly
extended to: CJ is a possible diagnosis iff

Rfalse ⊆ Scope(CJ)                                   (CV-MF-no-exo)

No COMP-exo and multiple faults is the default case in
DX. The way the line view selects a set of column vectors (cf
III.6) to build the equivalent extended matrix column
interprets as follows: a multiple fault can explain that a given
ARR is not satisfied if and only if at least one of its faults can
explain it, i.e. several faults never produce more / less than the
combination of their separate effects. On the other hand, it is
admitted that a faulty component does not necessarily affect an
ARR in its scope (no-exo) and that several faults may
compensate each other (compensation), resulting in a satisfied
ARR.

With the help of the ordering 0<X, the no-exoneration fault
interaction law can be stated very simply:

siJ = sup j∈J {sij}                                           (MF-no-
exo)

Thus in the line view the diagnoses are the sets CJ such that:

∀i (ARRi ∈ Rfalse ⇒ ∃j ∈ J,
Cj ∈ Support(ARRi)) (LV-MF-no-exo)

This, due to (MF-no-exo), translates to:

∀i (ARRi ∈ Rfalse ⇒ CJ ∈ Support(ARRi))

that in turn is the same as Rfalse ⊆ Scope(CJ), i.e. (CV-MF-
no-exo).

Theorem 4.2: Under the assumption of i-completeness, FDI
diagnoses in the ARR no-exoneration case are identical to non
empty DX diagnoses.

Example (polybox continued): For the polybox example, the
following extended signature matrix is obtained from the
usual one (see II.1.5) by replacing each 1 by X (all signatures
of at least triple faults are identical to (X,X,X)):

TABLE VI
POLYBOX EXTENDED SIGNATURE MATRIX WITHOUT EXONERATION

FA1 FA2 FM1 FM2 FM3 FA1
A2

FA1
M1

FA1
M2

FA1
M3

FA2
M1

FA2
M2

FA2
M3

FM1
M2

FM1
M3

FM2
M3

ARR1 X 0 X X 0 X X X X X X 0 X X X

ARR2 0 X 0 X X X 0 X X X X X X X X

ARR3 X X X 0 X X X X X X X X X X X

The following results are then obtained:
With outputs f = 10 and g  = 12, i.e. observed signature

(1,0,1), there are 4 minimal diagnoses: the 2 single fault
diagnoses {A1} and {M1} and the 2 double fault diagnoses
{A2, M2} and {M2, M3}, and 22 superset diagnoses.

With outputs f = 10 and g  = 10, i.e. observed signature
(1,1,0), there are 5 minimal diagnoses: the single fault
diagnosis {M2} and the 4 double fault diagnoses {A1, A2},
{A1, M3}, {A2, M1} and {M1, M3}, and 20 superset
diagnoses.

With outputs f = 10 and g  = 14, i.e. observed signature
(1,1,1), there are 8 minimal double fault diagnoses: {A1,
A2}, {A1, M2}, {A1, M3}, {A2, M1}, {A2, M2}, {M1,
M2}, {M1, M3} and {M2, M3}, and 16 superset diagnoses.

These results obtained by FDI are identical to those
obtained by DX (cf. II.2.3.2). In the case where f = 12 and g =
12, i.e. observed signature (0,0,0), any non empty subset of
components is a diagnosis: there are 5 minimal single fault
diagnoses and 26 superset diagnoses. The only difference
between FDI and DX is that, the “no-fault” column of
signature (0,0,0) is left implicit in the signature matrix.

It can be noticed that, except in the f = 10 and g = 14 case
(where anyhow, no exoneration can apply as no ARR is
satisfied), these results are different from those obtained under
the default exo assumption (II.1.6).

V. BENEFITS AND PERSPECTIVES ARISING FROM THE
UNIFIED FRAMEWORK

V.1. The SRE and ARR-completeness properties

The SRE property is required to perform a sound
comparison. Indeed, it imposes that the models SM and SD
are isomorphic both from a semantic and a syntactic point of
view.
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The ARR-d-completeness property (cf. the definition in
III.4) is a minimum requirement.

Let M(x, o) be the equation set that represents SM, where x
and o denote the vectors of variables contained in X  and O
respectively. Elimination theory allows one to go from M(x,
o) to a set of ARRs, E(o). When equivalence is preserved, ∀o
(∃x M(x, o) ⇔ E(o)), d-completeness is satisfied.  

Notice that in [24] such an equivalence is included in the
definition of an ARR, i.e. only d-complete ARRs are
considered.

An old result of algebraic geometry [21] states that the
equivalence holds for polynomial algebraic equations. This
result only ensures existence and is not constructive, i.e.
cannot be used in practice to build E. Now, recent computer
algebra techniques, such as Gröbner bases, Ritt’s algorithm
are a step in this direction [34].

The i-completeness property is a novel concept since it
requires to take into account the ARRs’ supports. This is not
common in the FDI community. The problem is related to the
fact that having a basis of ARRs does not guarantee that all
the potential minimal R-conflicts are represented by the
ARRs’ supports.

Example  (polybox continued): The polybox example,
presented in II.1.3, illustrates the above issues. {ARR1,
ARR2} is ARR-d-complete but not ARR-i-complete. Indeed,
let us consider C = {A1, A2, M1, M3} and OBS = {a = 2, b
= 2, c = 3, d = 3, e = 2, f = 10, g = 12}, then SM(C) ∪ OBS
|= ⊥, but neither ARR1 or ARR2 have a support included in C.
It is only when adding ARR3 , that can be obtained by
combining ARR1 and ARR2, and whose support is {A1, A2,
M1, M3} that ARR-i-completeness is obtained.

The ARR-i-completeness problem is even thornier, as
illustrated by the following example:

Example (the inverted polybox):

A1
a
b

d

f

x

y

c
A2

M

Fig. 2. The inverted polybox

Here COMPS = {A1, A2, M}, where A1 and A2 are adders
and M is a multiplier, with models as in section II. We
assume that O = {a, b, c, d, f} and X = {x, y}.
The unique ARR is given by:
ARR1: f – (a + b) . (c +d) = 0, with support {A1, A2, M}.

Let us consider the following observations: OBS = {a =
–1, b = c = d = f = 1} and C={A1, M}, then SM(C) ∪ OBS
|= ⊥, indeed x = 0 due to SM(A1) and f = 0 due to SM(M)
and the absorbant property of 0 for multiplication. However,
the support of ARR1 is not included in C. This proves the non
ARR-i-completeness.
Notice that the DX approach captures the {A1, M} R-conflict
for OBS because:

SD ∪ {¬AB(A1)} ∪ {a = –1, b = 1} |= x = 0
SD ∪ {¬AB(M)} ∪ {x = 0} |= f = 0
and this conflict does not appeal to the behavior of A2. Thus
DX single fault diagnoses are {A1} and {M}, different from
FDI ones which are {A1}, {A2} and {M} and come from the
violation of ARR1 by OBS.

Since ARR-i-completeness is not satisfied, theorem 4.1.
does not apply which explains that FDI and DX diagnoses are
different.

The problem arises when particular values of some
variables, appearing as input in a component’s model SM(C),
determine the component output independently of remaining
inputs.

The ARR-i-completeness issue is naturally linked to the
redundancy and minimality issues. It is known in DX that
only minimal (for subset inclusion) R-conflicts are relevant,
the non minimal ones being redundant. On the other hand, it
is common in FDI to derive additional ARRs by
combination. Although combined ARRs are redundant when
considered just as equations, they must be considered jointly
with their associated support to decide whether they are needed
to obtain i-completeness or can just be ignored. The following
proposition states under which conditions a combined ARR is
redundant with respect to a set of ARRis:

Proposition 5.1: The necessary and sufficient condition for a
given ARRj to be redundant with respect to a set of ARRis, i
∈ I, j ∉ I, is: ∃ I’ ⊆ I such that
1) for any observation OBS, if all ARRis, i ∈ I’, are satisfied
by OBS, then ARRj is satisfied by OBS (or, equivalently, if
ARRj is not satisfied by OBS, necessarily at least one of the

ARRis is not satisfied by OBS): ∧i  ∈ I’ ARRi[OBS] ⇒

ARRj[OBS] is valid.
2) the support of ARRj contains the support of each ARRi, i ∈
I’:
Supp(ARRj) ⊇ ∪i ∈ I’ Supp(ARRi).

ARR[OBS] designates the ground formula obtained from ARR
by substituting each observed variable by its value in OBS: if
OBS = {Xj = vj} then ARR[OBS] = ARR[Xj/vj].

The proof of proposition 5.1 is not given due to space
limitations.

V.2. Off-line vs. on-line computation of R-conflicts

From the computational point of view, the main difference
between the FDI and DX approaches is that in FDI most of
the computational work is done off-line. Using just the
knowledge of which variables are observed, i.e. sensor
locations, modeling knowledge is compiled: ARRs are
obtained by combining model equations or constraints, and
eliminating unobserved variables. The only thing that has to
be done on-line, i.e. when a given OBS  is acquired, is to
compute the truth value (with respect to OBS) of each ARR
and to compare the obtained observed signature with the fault
theoretical signatures (columns of the signature matrix). In
terms of R-conflicts, this means that potential R-conflicts are
compiled and that, for a given OBS, R-conflicts are exactly
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those potential R-conflicts which are supports of those ARRs
which are not satisfied by OBS.

Conversely, in DX, the computational task starts as soon as
OBS is known, nothing being compiled off-line.

The idea, coming from FDI, of compiling ARRs can be
used as so in the DX framework for obtaining potential R-
conflicts. This has indeed already been proposed in the DX
framework: [25] proposes to compute in advance all possible
linear combinations of models eliminating all occurrences of
unobserved variables, i.e. all possible ARRs, for the
monostable circuit, an analog electronic circuit. When this is
possible, this is a way to get the best from each approach:

•  modeling knowledge is compiled (under ARRs form)
according to sensor locations before any observation has been
made, which is the main advantage of the FDI approach;

•  thanks to explicit correctness assumptions, potential R-
conflicts (supports of ARRs) are computed at the same time to
give rise, given an OBS, to R-conflicts;

•  R-conflicts are used to generate the diagnoses, which is
the main advantage of the DX approach.

V.3. Logical soundness, decision and robustness

As seen in section 4, the DX logical diagnosis theory does
not make any kind of assumption about the faults a priori,
which guarantees logically sound results. In the most general
case, single as well as multiple faults are considered: a fault
may be observable or not at the symptom level and multiple
faults may as well compensate, i.e. being themselves not
observable. When the application domain suggests specific
assumptions, these are explicitly stated as additional axioms,
for example the exoneration assumptions as defined in section
IV.1

Conversely, the FDI approach implicitly adopts
assumptions to restrict the number of diagnosis candidates,
e.g. exoneration and single fault assumptions. These
assumptions are justified in statistical terms.

It has been mentioned in II.1.6 that, when the observed
signature fits no fault signature, some FDI applications accept
the closest fault signatures using a similarity-based
consistency criterion, e.g. with respect to some distance. The
reason for accepting an approximate matching is that it is a
way to cope with model uncertainties, e.g. unknown
disturbances or model errors. Another issue is to guarantee
some kind of robustness in the decision procedure which
assesses whether a residual is zero or not. Viewing this
operation as hypothesizing a whole set of possible observed
signatures, the formal proposed framework relating observed
and fault signatures still holds.

Another way to deal with uncertainties in FDI is to make
use of as many ARRs as can be derived, even though these
may be redundant from a detection and localization point of
view. It can be argued that additional signature bits ensure
more robust detection in the presence of noise and
disturbances. Although a definition of logically redundant
ARRs is provided in section V.1, the redundancy properties of
ARRs in noisy environments must be stated in statistical
terms and are not studied in this paper.

The robustness issue arises from the type of models being
used, which are essentially numeric with uncertainties
represented either by unknown disturbances or by
stochastically characterized signals. There are two families of
methods: those which act at the residual generation step
(unknown input observers [2], disturbance optimal decoupling
[8]) and those which act at the residual interpretation step
(statistical decision methods [5], fuzzy interpretation [6]).
These methods have no equivalent in DX.

DX manages uncertainty by focusing on the use of high
level of abstraction models, which are qualitative or symbolic.
Also widely used in DX, interval models (also known as
semi-qualitative models) are based on the assumption that
uncertainties are bounded [3], [25]. These have been
investigated for several years in the DX community as
realizing a perfect compromise between precision and
robustness; more recently, interval models have been
considered in pure FDI approaches [1], [28].

VI. CONCLUSION

The first goal of FDI was historically fault detection and
associated decision procedures. Its main interest was to offer
sophisticated techniques, such as observers and filters, so as to
interpret observations to produce a set of symptoms
(residuals). Nevertheless, the residuals can be designed in such
a way that they are also informative from the fault localization
point of view. DX approached the diagnosis problem the other
way around, focusing on fault localization by pointing out the
subsets of the system description that conflict with the
observations. Our study proves that a significant part of the
two theories fits into a common framework which allows a
precise comparison. When they adopt the same hypotheses
with respect to how faults manifest themselves and how many
faults can occur simultaneously, FDI and DX views agree on
diagnoses. This opens the possibility of a fruitful cooperation
between these two diagnostic approaches.

Some points have been left out of this comparison. There is
presently no equivalent in DX of the notion of unknown
disturbance or noise. Conversely, DX makes a systematic use
of fault models, whose counterpart in FDI can be found in
assumptions about the additive or multiplicative disturbances
that model the faults but always with respect to a correct
behavior model. Fault models have been left out of the
framework of the present paper. Temporal aspects of
diagnosis, which are crucial in the state tracking problem,
have not been approached neither. Further studies are needed
to integrate these aspects, which would be beneficial to both
communities.
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